5.1 EXAM QUESTIONS MS

1. (a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \quad 1$
(b) $\mathrm{S}^{-}(\mathrm{g}) \quad 1$
(c) The negative S^{-}ion 1
repels the electron being added 1
(d) (i) Enthalpy of atomisation of sulphur 1
(ii) Second ionisation enthalpy of calcium 1
(iii) Second electron affinity of sulphur 1
(e) Electron more strongly attracted 1 nearer to the nucleus or attracted by Ca^{+}ion 1
(f) Correct cycle
e.g. $+178+279+590+1145-200+\mathrm{E}-3013+482=0 \quad 1$
$=53911$
Allow one mark for - 539
2. (a) ΔH_{1} formation (1)
ΔH_{2} atomisation / sublimation (of Cs not Cl) (1)
ΔH_{5} electron affinity (of Cl) (1) 3
(b) $-433=79+376+121-364+\Delta H_{6} \mathbf{(1)}$
$\Delta H_{6}=-645\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1}) \quad 2$
both marks for correct answer alone allow 1 mark for +645 or 645
(c) Cs has larger radius / larger atom (not ion) / more shells / more orbitals / more sub-shells (1)
correct reference to shielding (1)
less powerful attraction (of nucleus) for (outer) e^{-}in $\mathrm{Cs}(\mathbf{1}) 3$
3. (a) (i) diagram shows in top box $\mathrm{Rb}^{+}(\mathrm{g})+\mathrm{e}^{-}+\mathrm{I}(\mathrm{g}) / \mathrm{e}^{-}$must be there (1) diagram shows in lower box $\mathrm{Rb}(\mathrm{s})+1 / 2 \mathrm{I}_{2}(\mathrm{~s})(\mathbf{1})$
(ii) $\Delta H_{1}=$ electron affinity (of iodine)/allow correct symbols including $\mathrm{I}_{2}, \mathrm{I}^{-}$, (1)
$\Delta H_{2}=$ lattice enthalpy / energy (of RbI) (1)
(iii) $\Delta H_{1}=-(+402)-(+107)-(+85.8)+(-328)-(-609)(\mathbf{1})$

$$
=-314\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1})
$$

give 1 mark for +313.8 or +314
assume + if no sign given
significant figure penalty for 310
4.
(i) \mathbf{A} is (enthalpy change) of formation(1)
\mathbf{B} is lattice enthalpy (1)
(ii) negative sign (only if a calculation) (1)
$883 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (1)
(only give both marks if working and answer correct)
hydration / solvation enthalpies (of Li^{+}and Cl^{-}) (1)
5. (a) Particles are in maximum state of order
(or perfect order or completely ordered or perfect crystal or minimum disorder or no disorder)
(entropy is zero at $0 k$ by definition)
(b) (Ice) melts (or freezes or changes from solid to liquid or from liquid to solid) 1
(c) Increase in disorder 1

Bigger (at T_{2}) 1
Second mark only given if first mark has been awarded
(d) (i) Moles of water $=1.53 / 18(=0.085) \quad 1$
$\begin{array}{lr}\text { Heat change per mole }=3.49 / 0.085=41.1\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) & 1 \\ \quad \begin{array}{ll}\text { (allow } 41 \text { to } 41.1, \text { two sig. figs.) } & \\ & \text { (penalise }-41 \text { (negative value), also penalise wrong units but } \\ \text { allow } k J \text { only) }\end{array} & \end{array}$
(ii) $\Delta G=\Delta H-T \Delta S \quad 1$
(iii) $\begin{array}{ll}\Delta H=T \Delta S \text { or } \Delta S=\Delta H / T & 1\end{array}$
(penalise if contradiction)
$\begin{array}{rlr}\Delta S= & 41.1 / 373=0.110 \mathrm{~kJ} \mathrm{~K}^{-1}\left(\mathrm{~mol}^{-1}\right)\left(\text { or } 110\left(\mathrm{~J} \mathrm{~K}^{-1}\left(\mathrm{~mol}^{-1}\right)\right)\right. & 1 \\ & \text { (allow } 2 \text { sig. figs.) } \\ & \text { (if use value given of } 45 \text {, answer is } 0.12(\text { or } 120 \text { to 121) } \\ & \text { (if } \Delta H \text { is negative in (d) (i), allow negative answer) } \\ & \text { (if } \Delta H \text { is negative in (d) (i), allow positive answer) } \\ & \text { (if } \Delta H \text { is positive in (d) (i), penalise negative answer) }\end{array}$
Correct units as above (mol^{-1} not essential) 1
6. (a) (i)

ONLY consider species involved in the step marked
(ii) Cycling clockwise about (*)

CE if step missing

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{a}} \mathrm{Ba}+1^{\text {st }} \mathrm{IEBa}+2^{\text {nd }} \mathrm{IE} \mathrm{Ba}+2 \Delta \mathrm{H}_{\mathrm{a}} \mathrm{Cl}+2 \mathrm{EACl}+\mathrm{LE}-\Delta \mathrm{H}_{\mathrm{f}} \mathrm{BaCl}_{2}=0(\mathbf{1}) \\
& +180+503+965+2 \times 122+2 \mathrm{EA}-2056+859=0(\mathbf{1}) \\
& \mathrm{EA}=-695 / 2=-(347 \text { to } 348)(\mathbf{1}) \\
& \quad \text { Ignore units } \\
& \quad \text { Calculation }-1 \text { for each error } \\
& \text { Mark conseq. } \\
& \text { Notes: } \\
& \text {-695 scores (2) } \\
& +(347 \text { to } 348) \text { scores (2) } \\
& \quad-(286 \text { to } 287) \text { scores (2) } \\
& \quad+(286 \text { to } 287) \text { scores } \mathbf{(1)} \\
& -573 \text { scores } \mathbf{(1)} \\
& +573 \text { scores }(\mathbf{0})
\end{aligned}
$$

(b) $\Delta \mathrm{S}=\Sigma \mathrm{S}$ products $-\Sigma \mathrm{S}$ reactants

$$
=(63+223)-124=162(\mathbf{1})
$$

$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad$ or $\quad \Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S} \quad$ or $\quad \mathrm{T}=\Delta \mathrm{H} / \Delta \mathrm{S}$ (1)
or used correctly
$\Delta \mathrm{H}=859 \times 10^{3} \mathbf{(1)}=\mathrm{T} \times 162$ $\mathrm{T}=(5300$ to 5304) $\mathrm{K}(\mathbf{1})$

Penalise if units ${ }^{\circ} \mathrm{C}$
-1 for each error + mark conseq.
7. (a) (i) Standard enthalpy change: $\Delta \mathrm{H}_{\mathrm{R}}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}$ products $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}$ reactants (1)
$\Delta \mathrm{H}_{\mathrm{R}}=(-804-394)-(-940)(\mathbf{1})$ N.B: If answer wrong
statement worth 2

$$
=-258\left(\mathrm{~kJ} \mathrm{~mol}^{-1} ;\right. \text { ignore units completely) (1) }
$$

Allow +258 (2) marks
Standard entropy change: $\Sigma \Delta$ S products $-\Sigma \Delta$ S reactants (1)
$\Delta S=(252+214)-(49.9+5.7+[2 \times 223])(\mathbf{1}) \mathbf{N} . B:$ If answer
wrong statement worth 2
$=-35.6\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right.$; ignore units completely) (1)
Allow +35.6 (2) marks
Mark - 36 AE minus one
Allow max one for $\mathbf{+ 1 8 7}$
(ii) $\mathrm{T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}$ or $\mathrm{T}=\frac{\Delta \mathrm{H} \text { value from above }}{\Delta \mathrm{S} \text { value from above }}$ (1)

Penalise wrong sign
$\mathrm{T}=\frac{-258 \times 1000}{-35.6}=7245$ to 7250 (1)
Ignore letter after value
Ignore \geq even if wrong way around
Mark answer conseq to ΔH and ΔS values from above
If negative temperature given max $\mathbf{2}^{*}$
If ${ }^{\circ} \mathrm{C}$ used incorrectly max 2^{*}

* But only penalise one of these errors

8. (a) (i) Standard enthalpy change: $\Delta \mathrm{H}_{\mathrm{R}}=\Delta \Sigma \mathrm{H}_{\mathrm{f}}$ (products) - $\Delta \Sigma \mathrm{H}_{\mathrm{f}}$ (reactants) (1) or cycle

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{R}}=([2 \times 0]+[3 \times-393.5])-(-824.2+[3 \times-110.5])(\mathbf{1}) \\
&=-24.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1}) \\
& \text { Allow }+24.8 \text { max one }
\end{aligned}
$$

Standard entropy change: $\Delta \mathrm{S}=\Sigma \mathrm{S}$ (products) $-\Sigma \mathrm{S}$ (reactants) (1)

$$
\begin{aligned}
\Delta \mathrm{S} & =([2 \times 27.3]+[3 \times 213.6])-(87.4+[3 \times 197.6])(\mathbf{1}) \\
& =(54.6+640.8)-(87.4+592.8)(\mathbf{1}) \\
& =15.2\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \mathbf{(1)}
\end{aligned}
$$

Allow -15.2 max one
(ii) $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ (1)
ΔH negative and $-T \Delta S$ is negative (or $\Delta \mathrm{S}$ positive or or correct calc) (1)
Hence $\Delta \mathrm{G}$ is always negative ($\mathbf{o r}$ feasible when $\Delta \mathrm{G} \leq \mathbf{0}$) (1)
(b) $\Delta \mathrm{G}=\mathrm{O}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ Hence $\Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S}$ (1)
$\mathrm{T}=\Delta \mathrm{H} / \Delta \mathrm{S}=492.7 \times 1000 / 542.6$ (1) $=908 \mathrm{~K}(1)$
penalise missing 1000 by one mark
(c) $\Delta \mathrm{G}(\mathrm{b})=\Delta \mathrm{G}(\mathrm{a})$
$\left(492.7 \times 10^{3}-\mathrm{T} \times 542.6\right)=\left(-24.8 \times 10^{3}-\mathrm{T} \times 15.2\right)(\mathbf{1})$
$517.5 \times 10^{3}=527.4 \mathrm{~T}(1)$
$\mathrm{T}=981.2 \mathrm{~K}(\mathbf{1})$
Allow 980-982
Penalise missing 1000 by one mark
9. (a) $\Delta \mathrm{Ha}=\sum \Delta \mathrm{H}_{\mathrm{f}}$ products $-\sum \Delta \mathrm{H}_{\mathrm{f}}$ reactants or

$$
\begin{align*}
& =\Delta \mathrm{H}_{\mathrm{f}} \mathrm{CO}_{2}-\left(\Delta \mathrm{H}_{\mathrm{f}} \mathrm{CH}_{4}+2 \Delta \mathrm{H}_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}\right)(\mathbf{1}) \\
& =-393.5+(74.8+[2 \times 241.8])(\mathbf{1}) \\
& =+164.9 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathbf{(1)} \tag{3}
\end{align*}
$$

(b) (i) The number of moles of gas increases from 3 to 5 (1)

More moles gas gives more disorder (1)
(ii) $\Delta \mathrm{S}=\sum \mathrm{S}$ prducts $-\sum \mathrm{S}$ reactants (1)

$$
\begin{aligned}
& =(213.6+[4 \times 130.6])-(186.2+[2 \times 188.7])(\mathbf{1}) \\
& =+172.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \mathbf{(1)}
\end{aligned}
$$

(c) (i) $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ or $\Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S}$ (1)
$\mathrm{T}=164.9 \times 1000 / 172.4$ (1)
$=956.5 \mathrm{~K}$ (1)
Marked consequentially
(ii) Above this temperature (1)
this reaction is feasible or spontaneous (1)
10. (a) $\Delta H^{\ominus} \quad \Delta \mathrm{H}^{\ominus}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}^{\stackrel{\ominus}{f}}$ (products) $-\Sigma \Delta \mathrm{H} \stackrel{\ominus}{\boldsymbol{f}} \quad$ (reactants) (1)

$$
=-201+110
$$

$$
=-91 \mathrm{kJmol}^{-1}(\mathbf{1})
$$

$\Delta S^{\ominus} \quad \Delta S^{\ominus}=\Sigma S^{\ominus}$ (products) $-\Sigma \mathrm{S}^{\ominus}$ (reactants) (1)
$=+240-2 \times 131-198$
$=-220 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ (1)
(b) Feasible reaction One for which $\Delta \mathrm{G} \leq \mathrm{O}$ (1)

Temperature

$$
\begin{aligned}
& \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
& \text { For } \Delta \mathrm{G}=\mathrm{O}, \mathrm{~T}=\Delta \mathrm{H} / \Delta \mathrm{S}=-91 \times 1000 /(-220)
\end{aligned}
$$

$$
=414 \mathrm{~K} \quad \mathbf{(1)}
$$

11. (a) $\Delta \mathrm{H}^{\ominus}=\Sigma \Delta \mathrm{H} \stackrel{\ominus}{f}$ (products) $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}^{\ominus}$ (reactants) (1)

$$
\begin{aligned}
& =2 \times(-396)-2 \times(-297) \\
& =-198 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathbf{(1)} \\
\Delta \mathrm{~S}^{\boldsymbol{\ominus}} & =\Sigma \mathrm{S}^{\boldsymbol{\ominus}}(\text { products })-\Sigma \mathrm{S}^{\boldsymbol{\ominus}}(\text { reactants })(\mathbf{1}) \\
& =2 \times(257)-204-2 \times(248) \\
& =-186 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}(\mathbf{1}) \\
\Delta \mathrm{G}^{\boldsymbol{\Theta}} & =\Delta \mathrm{H}^{\ominus}-\mathrm{T} \Delta \mathrm{~S}^{\boldsymbol{\Theta}} \text { (1) } \\
& =-198-298(-186 / 1000)(\mathbf{1}) \\
& =-143 \mathrm{~kJ} \mathrm{~mol}^{-1}(\mathbf{1})
\end{aligned}
$$

(b) One for which $\Delta \mathrm{G} \leq \mathrm{O}$ (1)

$$
\begin{align*}
& \mathrm{T}=\frac{\Delta H}{\Delta S} \text { when } \Delta \mathrm{G}=\mathrm{O} \tag{1}\\
& =\frac{-198 \times 1000}{-186}=1100 \mathrm{~K}
\end{align*}
$$

12.

(i) fewer moles of gas (1)
more 'order' in system (1) dependent on idea of fewer moles for first mark
(ii) $25^{\circ} \mathrm{C}=298 \mathrm{~K}$ (1)
$\Delta S=\frac{-188}{1000}$ or $(\Delta H \times 1000)(\mathbf{1})$
mark is for ensuring ΔH or ΔS are both expressed in terms of J or kJ

$$
\begin{aligned}
\Delta G= & -196-298\left(-188 \times 10^{-3}\right) \\
& =-140 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { or }-139976 \mathrm{~J} \mathrm{~mol}^{-1}(\mathbf{1})
\end{aligned}
$$

ignore sig. figs
sign and unit must be correct in final answer
$\Delta G-v e$. reaction feasible (1)
4
13. (a) (i) Steps

Sublimation/atomisation enthalpy or
$\Delta H_{\text {fus }}+\Delta H_{\text {vap }} \mathrm{Ca}(\mathrm{s}) \rightarrow \mathrm{Ca}(\mathrm{g})(\mathbf{1})$
First ionisation enthalpy of calcium $\mathrm{Ca}(\mathrm{g}) \rightarrow \mathrm{Ca}^{+}(\mathrm{g})+\mathrm{e}^{-}$
Second ionisation enthalpy of calcium $\mathrm{Ca}^{+}(\mathrm{g}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{g})+\mathrm{e}^{-}$(1)
Dissociation enthalpy/bond energy/2 $\times \Delta H_{\mathrm{a}}$ chlorine
$\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{g})(1)$
$2 \times$ First electron affinity of chlorine $2 \mathrm{Cl}(\mathrm{g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{g})(1)$
Lattice dissociation (or formation) enthalpy
$\mathrm{CaCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g})(\mathbf{1})$
Enthalpy of formation of calcium chloride
$\mathrm{Ca}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{~g}) \quad$ (1)
(ii) 2nd IE needed when CaCl_{2} formed or only 1st IE for CaCl (1)

BE of Cl_{2} needed when CaCl_{2} formed but $\mathrm{BE} / 2$ for CaCl
(or equivalent) (1)
$2 \times$ electron affinity when CaCl 2 formed but $1 \times \mathrm{EA}$ for CaCl (1) LE of CaCl_{2} greater (or different) than LE CaCl (1)
(b)
(i)

$$
\begin{aligned}
& +\mathrm{LE}+\left(\Delta H_{\mathrm{hyd}} \mathrm{Ca}^{2+}\right)+2\left(\Delta \mathrm{H}_{\mathrm{hyd}} \mathrm{Cl}^{-}\right)-\Delta H_{\text {soln }} \mathrm{CaCl}_{2}=\mathrm{CaCl}_{2}=0 \text { or correct } \\
& \quad \text { cycle (1) }
\end{aligned}
$$

$$
\begin{aligned}
\Delta H_{\text {soln }} \mathrm{CaCl} 2 & =2255-1650-768 \\
& =-163 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

(ii) Marked consequentially to answer in (c)(i)

Solubility decreases (1)
Enthalpy of solution negative or exothermic (1)
Equilibrium displaced as predicted by Le Chatelier (1)
(c) (i) $\Delta H \stackrel{\ominus}{\boldsymbol{\bullet}}\left(\mathrm{CH}_{2}\right)_{4}=4 \Delta H \stackrel{\ominus}{\boldsymbol{f}} \mathrm{CO}_{2}+4 \Delta H \stackrel{\ominus}{\boldsymbol{f}} \mathrm{H}_{2} \mathrm{O}-\Delta H \stackrel{\ominus}{\boldsymbol{f}}\left(\mathrm{CH}_{2}\right)_{4}$ (1)
$-2558=(4 \times-393.5)+(4 \times-245.1)-\Delta H \stackrel{\ominus}{\mathbf{f}}\left(\mathrm{CH}_{2}\right)_{4}(\mathbf{1})$
$\Delta H \stackrel{\ominus}{\mathbf{f}}\left(\mathrm{CH}_{2}\right) 4=+3.6 \mathrm{~kJ} \mathrm{~mol}^{-1}(\mathbf{1})$
(ii) Enthalpy put in to break bonds
$4 \times \mathrm{C}-\mathrm{C}=4 \times 347$ (1) $=1388$
$8 \times \mathrm{C}-\mathrm{H}=8 \times 413$ (1) $=3304$
$6 \times \mathrm{O}=\mathrm{O}=6 \times 498(\mathbf{1})=2988$
Total $=7680$
Enthalpy given out when bonds made
$8 \times \mathrm{C}=\mathrm{O}=8 \times-805(\mathbf{1})=-6440$
$8 \times \mathrm{O}-\mathrm{H}=8 \times-464(\mathbf{1})=-3712$
Total $=-10152$

$$
\begin{aligned}
\text { Enthalpy change } & =\text { Enthalpy in }- \text { enthalpy out } \\
& =7680-10152 \text { (1) } \\
& =-2472 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathbf{(1)}
\end{aligned}
$$

marked consequentially
Explanation
Mean bond enthalpies used or bond enthalpies depend on environment (1)
Cyclobutane less stable than suggested by mean bond enthalpies (1)
Cyclobutane a strained structure or bond angles 90° (1) 10
Stability of cyclobutane marked consequentially.

$$
\begin{array}{ll}
0 & =-\Delta H_{\mathbf{f}}^{\ominus}+\Delta H_{\mathbf{s u b}}^{\ominus}+\Delta H{ }_{\mathbf{d i s s}}^{\ominus}+\Delta H \stackrel{\ominus}{\mathbf{f}}+\Delta H_{\mathbf{e a}}^{\ominus}+\Delta H \stackrel{\ominus}{\mathbf{f}} \\
\Delta H \stackrel{\ominus}{\mathbf{f}} & =\Delta H_{\mathbf{s u b}}^{\ominus}+\Delta H_{\mathbf{d i s s}}^{\ominus}+\Delta H_{\mathbf{f}}^{\ominus}+\Delta H_{\mathbf{e a}}^{\ominus}+\Delta H \\
\Delta H \stackrel{\ominus}{\mathbf{f}} & =+146+121+736-364-753 \\
\Delta H \stackrel{\ominus}{\boldsymbol{f}} & =-114 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathbf{(3)} \quad[-1 \text { for each error }]
\end{array}
$$

$$
\Delta H^{\ominus}=\Delta H_{\mathbf{f}}^{\ominus} \quad\left(\mathrm{MgCl}_{2}\right)-\Delta H_{\mathbf{f}}^{\ominus} \quad(\mathrm{MgCl})=-653-2(-114)=-425 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad 1
$$

$$
\Delta S^{\boldsymbol{\theta}} \approx 0 \text { since } 2 \mathrm{~mol} \text { solid } \rightarrow 2 \mathrm{~mol} \text { solid }
$$

$$
\text { if } \Delta S^{\boldsymbol{\ominus}}=0 \text {, then } \Delta G^{\ominus}=\Delta H^{\ominus}
$$

So $\Delta G^{\boldsymbol{\Theta}}$ for the reaction is <0 (at all T)- hence MgCl_{2} is always favoured over $\mathrm{MgCl} \quad 1$

15 (a) Heat (energy)/ internal energy change (not energy change) (1) Measured at constant pressure (1)
(b)

Notes:- Ignore electrons in cycle
Penalise missing labels by max 2
Penalise missing state symbols in 'active step' by max 2
Penalise incorrect chemistry every time
Allow steps written horizontally
Calculation:
$\Delta H_{\mathrm{a}} \mathrm{Mg}+1^{\text {st }} \mathrm{IE} \mathrm{Mg}+2^{\text {nd }}$ IE Mg $+\Delta H_{\mathrm{a}} \mathrm{O}+1^{\text {st }} E A \mathrm{O}+2^{\text {nd }} E A \mathrm{O}+$ LE Form $-\mathrm{MgO} \Delta H_{\mathrm{f}} \mathrm{MgO}=0$
(1)

Hence; $148+738+1451+249-141+798+$ LE $+602=0(1)$
(NB This scores 2)
LE formation $\mathrm{MgO}=-3845\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1})$
(Allow +3845 Max 2)
(c) For the reaction $\mathrm{MgCl}_{2}(\mathrm{~s})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgCl}_{3}(\mathrm{~s})$

$$
\begin{align*}
\Delta H_{\mathrm{r}} & =\Delta H_{\mathrm{f}} \mathrm{MgCl}_{3}-\Delta H_{\mathrm{f}} \mathrm{MgCl}_{2} \\
& =+3904-(-653)=4557\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1}
\end{align*}
$$

ΔS is negative/ entropy decreases (as order increases) (1)
$\Delta G=\Delta H-T \Delta S$ (1)
ΔG must (always) be positive (since ΔH_{r} and $-T \Delta S$ are both positive) (1)
Reaction never/not feasible (or equivalent) (1)
16. $\Delta S=\Sigma$ S products $-\Sigma$ S reactants 1

$$
\Delta S=(259+187)-(201+161) \quad 1
$$

$$
\Delta S=84\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \quad \text { (Ignore units) } \quad 1
$$

$$
\text { Allow - } 84 \text { to score (1) mark }
$$

$$
\Delta G=\Delta H-T \Delta S
$$

$$
=-21.6-298 \times 84 / 1000
$$

$$
=-46.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { or }-46600 \mathrm{~J} \mathrm{~mol}^{-1}
$$

Allow (2) for -46.6 without units
(Mark ΔG consequentially to incorrect ΔS)
(e.g. $\Delta S=-84$ gives $\Delta G=+3.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$)
17. (a) Reaction 1

$$
\begin{aligned}
& \Delta H=\Sigma \Delta H_{\mathrm{f}} \text { products }-\Sigma \Delta H_{\mathrm{f}} \text { reactants (1) } \\
& =\left(\Delta H_{\mathrm{f}} \mathrm{CO}\right)-\left(\Delta H_{\mathrm{f}} \mathrm{CH}_{4}+\Delta H_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}\right) \\
& =(-110.5)-(-74.8-241.8)=+206.1\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\
& \Delta S=\Sigma S \text { products }-\Sigma S \text { reactants } \mathbf{1} \mathbf{1}) \\
& =(197.6+[3 \times 130.6])-(186.2+188.7)=214.5\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
& \Delta G=\Delta H-T \Delta S(\mathbf{1}) \\
& 0=+206.1-T \times 214.5 / 1000(\mathbf{1}) \\
& T=206.1 \times 1000 / 214.5=960.8(\mathrm{~K})(\mathbf{1})
\end{aligned}
$$

(allow 961)
Penalise incorrect units in calculation of temperature by 2 marks
Mark T consequentially
Reaction 2

$$
\begin{aligned}
& \Delta H=2 \Delta H_{\mathrm{f}} \mathrm{NH}_{3}=-92.2\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\
& \Delta S=(2 \times 192.3)-(191.6+[3 \times 130.6])=-198.8\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(\mathbf{1}) \\
& \Delta G=0=-92.2+\mathrm{T} \times 198.8 / 1000 \\
& \mathrm{~T}=92.2 \times 1000 / 198.8=463.8(\mathrm{k})
\end{aligned}
$$

(allow 464)
Mark T consequentially
Note:- Allow first calculation max 7 and second calculation max 3
(b) Reaction 1 at higher temperatures
equilibrium yield increased/forward reaction favoured as reaction endothermic (1)
rate of reaction increased (1)
a compromise temperature used based on high cost of high
temperature (1)
Reaction 2 at higher temperatures
equilibrium yield reduced/backward reaction favoured as reaction exothermic (1)
rate of reaction increased (1)
a compromise temperature used based on overall yield (1)
Mark consequentially to ΔH values in (a)
18. (a) Spontaneous when $\Delta \mathrm{G}<0$ or $\Delta \mathrm{G}=0$ (1)
$\Delta G=\Delta H-T \Delta S$ (1)
Calculation of $\Delta H ; \Delta H_{\text {reaction }}=\Sigma \Delta H_{\text {Prolucts }}-\Sigma \Delta \mathrm{H}_{\text {Reactants }} \mathbf{(1)}$

$$
=(2 \times-110.5)-(-3935)=+172.5 \text { Allow } 172-173 \mathrm{~kJ} \mathrm{~mol}^{-1}(\mathbf{1})
$$

Calculation of $\Delta S ; \Delta S_{\text {reaction }}=\Sigma \Delta S_{\text {Products }}-\Sigma S_{\text {Reactants }}(\mathbf{1})$

$$
=(2 \times 197.6)-(5.7+213.6)=175.9 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(\mathbf{1})
$$

Calculation of $T \quad \Delta G=172.5-T \times 175.9 / 1000=0(\mathbf{1})$
$T \times 175.9 / 1000=172.5$
$T=172.5 \times 1000 / 175.9=980.7 \mathrm{~K}(\mathbf{1})$
(b) Calculation of $\Delta H_{\text {Vaporisation }}$;

3675 J vaporise 1.50 g water $3675 \times 18 / 1.50$ vaporise 1.00 mole water $=44.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathbf{(1)}$
Calculation of $\Delta S ; \quad \Delta G=0=44.1-373 \times \Delta S / 1000$ or $\Delta S=\Delta H / T$ (1) $\Delta S=44.1 \times 1000 / 373=118.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}(\mathbf{1})$ 3
19. (a) $\Delta H \stackrel{\ominus}{\mathbf{f}}=\Sigma \Delta H \stackrel{\ominus}{\boldsymbol{f}}$ (products) $-\Delta H \stackrel{\ominus}{\mathbf{f}}$ (reactants) (1)

$$
=(-110.5)-(-271.9)=+161.4 \text { [Allow } 161-161.5] \mathrm{kJ} \mathrm{~mol}^{-1}(\mathbf{1})
$$

$\Delta S^{\boldsymbol{\theta}}=\Sigma S^{\boldsymbol{\theta}}$ (products) $-\Sigma S^{\boldsymbol{\theta}}$ (reactants) (1)
$=(27.3+197.6)-(58.5+5.7)=+160.7$
[Allow 160.6 - 161] $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1} \mathbf{(1)}$
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ [Stated or correctly used] (1)
$\Delta \mathrm{G}=+161.4-450 \times 160.7 / 1000(1)$
$=+89.1[$ Allow $88.5-89.1] \mathrm{kJ} \mathrm{mol}^{-1}$. (1)
$\Delta H \stackrel{\ominus}{\mathbf{f}}=(-393.5)-(-271.9-110.5)=-11.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$. (1)
$\Delta S^{\ominus}=(213.6+27.3)-(58.5+197.6)=-15.2 \mathrm{~J} \mathrm{mo1}^{-1} \mathrm{~K}^{-1}$. (1)
$\Delta \mathrm{G}=-11.1+450 \times 15.2 / 1000=-4.26[$ Allow -4.3$] \mathrm{kJ} \mathrm{mol}^{-1}$. (1)
(b) Feasible when $\Delta \mathrm{G} \leq 0$ or $\Delta \mathrm{G}$ is negative (1)

Process 1 is more feasible as temperature is increased (1)
Because ΔS is positive or $-T \Delta S$ is negative or $T \Delta S$ is positive (1)
Process 2 is less feasible as temperature is increased (1)
Because ΔS is negative or $-T \Delta S$ is positive or $T \Delta S$ is negative (1) 5

